k-Tuple Total Domination in Complementary Prisms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

k-TUPLE TOTAL DOMINATION IN INFLATED GRAPHS

The inflated graph GI of a graph G with n(G) vertices is obtained from G by replacing every vertex of degree d of G by a clique, which is isomorph to the complete graph Kd, and each edge (xi, xj) of G is replaced by an edge (u, v) in such a way that u ∈ Xi, v ∈ Xj , and two different edges of G are replaced by non-adjacent edges of GI . For integer k ≥ 1, the k-tuple total domination number γ ×...

متن کامل

k-tuple total domination and mycieleskian graphs

let $k$ be a positive integer. a subset $s$ of $v(g)$ in a graph $g$ is a $k$-tuple total dominating set of $g$ if every vertex of $g$ has at least $k$ neighbors in $s$. the $k$-tuple total domination number $gamma _{times k,t}(g)$ of $g$ is the minimum cardinality of a $k$-tuple total dominating set of $g$. if$v(g)=v^{0}={v_{1}^{0},v_{2}^{0},ldots ,v_{n}^{0}}$ and $e(g)=e_{0}$, then for any in...

متن کامل

k-TUPLE TOTAL DOMINATION AND MYCIELESKIAN GRAPHS

Let k be a positive integer. A subset S of V (G) in a graph G is a k-tuple total dominating set of G if every vertex of G has at least k neighbors in S. The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the k-tuple tota...

متن کامل

Roman domination in complementary prisms

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Discrete Mathematics

سال: 2011

ISSN: 2090-7788

DOI: 10.5402/2011/681274